
The Design of Beam Pickup and Kickers

D. P. McGinnis
Fermi National Accelerator Laboratory*

Abstract

    The behavior of beam pickup and kickers subjected to the electromagnetic fields
of relativistic charged particles is examined. The concept of image currents is
explained. The frequency domain response of a simple stripline pickup is derived
and the behavior of kickers is explained through Lorentz reciprocity.

INTRODUCTION

Electromagnetic beam position pickups are an important component in the
instrumentation of particle accelerators. Also, pickups and kickers are important to
the design of beam feedback systems such as dampers and stochastic cooling
systems. Pickups are usually designed to measure a particle's transverse or
longitudinal position in a beam pipe by intercepting a portion of the electric and
magnetic field that results from a moving charged particle. Kickers are basically
pickups used in reverse. The electromagnetic field in a kicker is used to change a
particle's transverse or longitudinal momentum.

The design of pickups is somewhat forgiving. Just about anything that is stuck
in a beam pipe will intercept some portion of a beam's electromagnetic field. This
accounts for the wide variety of pickups and kickers found in particle accelerators.
However, the careful consideration of pickup and kicker parameters such as
bandwidth, sensitivity, and impedance are important to the optimization of the
design of beam position or damper systems. This paper will try to illustrate some
of the fundamental principles in beam pickup and kicker designs. To keep the
discussion clear and simple, this paper will for the most part consider the
conventional stripline pickup and kicker.

IMAGE CURRENT

For most cases, the beam energy is much greater than the energy that is
siphoned away in the pickup signal. That is, the pickup will not significantly
decelerate the beam. With this in mind we can treat the beam as a current source.
However, the beam charge will not directly flow through a pickup (unless the
beam hits the wall of the beam pipe). The pickup will intercept some portion of the
electromagnetic fields that accompany the beam.
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Any charged particle will exhibit an electromagnetic field. When the particle is
at rest the field is electric and points radially outward in all directions as shown in
Fig. 1a. As a particle moves it has both electric and magnetic fields. The way to
calculate these fields is to transform the electric field of a particle in its own rest
frame to the lab reference frame by using the relativistic electromagnetic tensor.
Fortunately we do not need to go into this kind of detail in this paper. A qualitative
view of a moving particle's field is shown in Fig. 1b. As a particle's velocity
increases, the amount of electric field pointing in the direction of motion decreases
and the azimuthal magnetic increases. The resulting field pattern starts looking like
a flattened pancake whose width is inversely proportional to the particle energy.
As the particle velocity approaches the speed of light or as the kinetic energy of
the beam becomes much greater then the particle's rest energy, the direction of the
electric and magnetic fields becomes transverse to the direction of
motion(TEM).(1) To keep things simple, this paper will restrict its attention to
high energy particle beams.
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Figure 1a. Electric field of a charged
particle at rest.

    

Figure 1b. Electromagnetic fields of
a relativistic charged particle. (γ>>1)

When a charged particle is formed at a source, a particle of equal an opposite
charge is also usually created. For example, a proton is extracted from a hydrogen
atom by stripping the electron from the atom. This electron is still attracted to the
proton and would like to follow the proton on its journey. As the proton is injected
into the beam pipe (which we will assume is a metal for simplicity), the electron
would like to "hop" onto the metal beam pipe. A metal can be considered as a sea
of electrons that float around a lattice of positively charged ions. The velocity of
these electrons is much smaller than the speed of light so that the electron that was
injected onto the metal could not possibly keep up with the faster moving proton.
(Note that due the nature of quantum mechanics one cannot really keep track of a
particular electron in this "sea" of electrons.) The energy of the disturbance caused
by the first electron "jumping" onto the metal is transmitted from electron to



electron by means of an electromagnetic wave that follows the moving proton.
This disturbance can be thought of as an image current flowing along the surface
of the beam pipe that follows the proton. The magnitude of the image current is
equal to the beam current but has the opposite sign.

The limiting case of a TEM pulse for a high energy particle beam
electromagnetic field allows one to use Ampere's law to solve for the distribution
of image current flowing on the walls of the beam pipe. Ampere's law with
displacement current is:
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where z is a unit vector that runs parallel to the beam and dl is a vector that is in a
plane normal to the beam direction as shown in Fig 2. Since the electric field of the
TEM wave is perpendicular to the beam direction, the displacement current term
on the right side of Eq. 1 is zero. The transverse magnetic field can be found from
the solution of the static two dimensional version of Ampere's law
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The transverse electric field is equal to the magnetic field multiplied by the wave
impedance of free space:
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Since there are no electromagnetic fields in the metal of the beam pipe, an image
current density must flow on the surface of the beam pipe to cancel out the
magnetic field tangent to the metal surface.
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where Js has the units of Amperes/meter and n is a unit vector that is normal to the
beam pipe surface.(2)

Commercial computer programs that can solve the static two dimensional
Ampere's equation are readily available. However, we will discuss two solutions in
which the analytical solution is well known. For a cylindrical beam pipe with the
beam current passing through the center of the pipe:

J image = −
Ibeam
2πb

(5)

If a pencil thin beam passes off center as shown in Fig. 3 (3):

J image φ( ) = −
Ibeam
2πb

b2 − r2

b2 + r2 − 2br ⋅cos φ − θ( )
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Figure 2. Beam pipe configuration
for application of Faraday's Law.

    

Figure 3. Beam going off center
through the beam pipe. The dark
lines on the sides are the pickup
electrodes.

The image current density as a function of angular position for an offset pencil
thin beam is shown in Fig. 4. If two electrodes are fashioned to intercept only a
fraction of the image current as shown in Fig. 3, the electrode closer to the beam
will intercept more image current compared to the further electrode. The
difference in intercepted image currents between the two electrodes will be
proportional to the beam position for small beam displacements. However, for
large beam displacements, the difference signal will deviate from being linear with
beam position as shown in Fig. 5. This situation can be corrected by fashioning the
width as a function of electrode length.(3) We will define the sensitivity of the
electrode as equal to the ratio of image current captured to the total image current.

s =

Jsdw

width
∫
Ibeam

(7)
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Figure 4. Image current density
versus angular position for the
electrode configuration shown in
Fig. 3.

  

Figure 5. Difference in intercepted
image current between the two
electrodes shown in Fig. 3. versus
actual beam displacement.

TIME DOMAIN RESPONSE

The following discussion will describe the time domain response of an
extremely simple beam pickup. We will describe the electromagnetic fields in terms
of integral quantities such as voltage and current.

Consider a moving charged particle in the center of a circular beam pipe
traveling at a speed very close to the velocity of light as shown in Fig. 6. The
observer is located at z=0. Assume that the particle will cross z=0 at time t=0.
Because we are assuming that the particle's energy is much greater than its rest
mass, the width of the pancake pattern of the EM fields as shown in Fig. 1b will
shrink to infinitesimally narrow. The electrical current viewed by the observer can
be approximated as:

i(t) = q ⋅δ(t) (8)
where δ is the Dirac delta function. The Dirac delta function δ(t) is zero
everywhere outside t=0, infinite at t=0., and:

δ t( )dt

− ∞

∞

∫ = 1 (9)

Because the δ function as it is written in Eq. 9, has units of 1/time, the current
described by Eq. 8 has the correct units of charge/time. The image current which
flows  along the inner wall of the beam pipe is equal in magnitude but opposite in
sign to the particle current. Also by symmetry, the current density is uniform
around the entire circumference of the beam pipe.

Imagine that the beam pipe is sawed in half at z = 0. The gap between the two
halves of the beam pipe looks like a capacitor to the image current( for infinitely



long beam pipes this capacitance will be infinite). The only means for the image
current to pass through the gap is by means of a displacement current which is
analogous to an AC current flowing through a capacitor. If one could measure the
voltage drop across the gap without disturbing the uniformity of the image current
density, the voltage drop across the gap would be zero before t=0 and for t>0:

v(t) = −
1
C

i(τ)dτ = −
q
C

−∞

t

∫ (10)
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Figure 6.  Beam pipe with capacitive
gap cut at center.

THE FREQUENCY DOMAIN RESPONSE

The result of Eq. 10 is a simple result that could have been easily derived
without going through the steps of Eqs. 8-10 but; the geometry of most pickups is
not as simple as the configuration shown in Fig. 6. In general the voltage at the
output of a pickup due to a single point charge is a function of time:

v(t) = q ⋅z(t) (11)
where the units of z(t) is Ohms/second. For another particle that crosses the
observation point at t = tp, the voltage due to that particle is:

vp(t) = q ⋅ z(t − t p) (12)

If the beam contains more than one particle, the voltage is the sum of all the
individual voltages generated by each particle.

v(t) = q Npz(t − tp )
p
∑ (13)

where Np is the number of particles that cross z=0 at t=tp. Up to this point we
have been considering particles on a one by one basis. For most beams, there will



be a large number of particles. The number of particles in a small slice of time
called dtp is:

N p =
i(tp)

q
dt p (14)

As the length of the slice approaches zero, the sum in Eq. 13 can be rewritten as an
integral:

v(t) = z t − tp( )⋅ i tp( )dt p

−∞

t

∫ (15)

Equation 15 is the convolution of the impulse response of the pickup with the
beam current. Equation 15 is an important result. It implies that to completely
describe the pickup all we need to know is the impulse response of the pickup z(t)
and the charge distribution of the beam.

Coupled with the fact that convolution integrals are in general not easy to do
and the availability of RF spectrum analyzers and network analyzers, it is much
easier to solve Eq 15. in the frequency domain.(4) The Fourier transform of the
voltage is:

V(ω) = v(t)e− jωtdt

−∞

∞

∫ (16)

Since V(ω) is the spectral density of v(t), the units of V(ω) is Volts/Hertz.
Applying the Fourier transform to Eq 15., we get Ohms law for pickups:

V(ω) = Z(ω) ⋅ I(ω) (17)
where I(ω) is the spectral density of i(t) and has units of Amperes/Hertz. Z(ω) has
units of Ohms and is called the pickup impedance. The rest of the paper will
concentrate an how to calculate or measure Z(ω).

BEAM SPECTRUM

Before a pickup design can begin, the frequency spectrum of the beam current
should be known. This section will discuss the spectrum of two simple beam
profiles. These profiles are the square pulse and the gaussian bunch as shown in
Fig. 7.

For the square pulse:

      Time Domain Frequency Domain

i(t) =
Nbq
2σ

       for t < σ

i(t) = 0               for t > σ                               I(ω) = N bq
sin (ωσ)

ωσ
(18)

where Nb is the number of particles in the bunch. For a gaussian pulse:
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Figure 7.  Time domain picture of a
square pulse and gaussian waveform.

    

Figure 8. Fourier transform of a
square pulse and a gaussian
waveform.

The frequency response of these pulses is shown in Fig. 8. Note that the DC
value for both cases is the total amount of charge in the bunch. The square wave
pulse falls off much slower than the gaussian bunch at high frequencies. This is due
to the sharp edges of the square pulse in the time domain. Although a perfect
square pulse might be a simple approximation, one should also realize that the
steep drop-off at high frequencies for a gaussian pulse is due to the fact that the
tails of the gaussian in the time domain extend to infinity! In reality all beam pulses
have a finite extent in time. Therefore the use of a gaussian bunch as a model for
the bunch structure will not be accurate at high frequencies. In general any kind of
edges in the distribution will cause the beam current spectral density to fall off as
1/ω at high frequencies.

TRANSMISSION LINE THEORY

Because many pickup designs are based on transmission lines that couple to the
beam, this section will give a brief over view of transmission line theory. A TEM
transmission line consists of at least two conductors that run parallel two each but
are separated by some small distance. Between the conductors there is stored
magnetic energy which is proportional to the inductance of the conductors and
there is electrical energy which is proportional to the capacitance between the two
conductors. A small section of transmission line can be modeled as a series



inductance with a shunt capacitance as shown in Fig. 9. The current going through
the inductor is proportional to the voltage drop across the inductor:

                   v − v + ∆v( )= L ⋅ ∆z
∂i

∂t
      

∆z→0 →         −
∂v

∂z
= L

∂i

∂t
(20)

where L is the inductance per unit length. The current exiting the transmission line
segment is the difference between the input current and the capacitance current
(5):

                   i + ∆i = i − C ⋅ ∆z
∂v

∂t
          

∆z→0 →        −
∂i

∂z
= C

∂v

∂t
(21)

where C is the capacitance per unit length. Equations 22 -23 govern how the
voltage and the current "bootstraps" with each other along the transmission line.
This "bootstrapping" can be written down as forward and reverse propagating
waves:

v = v+ t −
z

vel
 
 

 
 + v− t +

z
vel

 
 

 
 

i =
v+

Zo
t −

z
vel

 
 

 
 −

v−

Zo
t +

z
vel

 
 

 
 

(22)

The (+) superscript indicates a wave in the +z direction and the (-) superscript
indicates a wave traveling in the -z direction. The symbol vel is the phase velocity
of the waves and is equal to:

vel =
1
LC

(23)

The symbol Zo is called the characteristic impedance of the transmission line and is
the ratio between the wave voltage and the wave current. It can be written in terms
of the line inductance and capacitance as:

Zo =
L
C

(24)

The first thing to note about Eq. 22 is that the form of the solution is very general.
Thus, if a pulse is initiated on a transmission line its shape will not distort as it
travels down the line. Also, the forward and reverse waves are independent modes.
That is, if a forward wave is initiated on a transmission line it will remain a forward
traveling wave as long as no discontinuity occurs on the transmission line.

However if a discontinuity occurs on the line, then both forward and reverse
traveling waves must exist to support the boundary conditions governed by the
discontinuity. For example, assume that a transmission line is terminated in some
resistance Rt and a forward traveling wave has been initiated on the transmission
line and is traveling towards the termination. At the termination, the ratio between
the voltage and the current must be Rt. Therefore, the ratio between the forward
and reverse waves can be found by dividing the top equation by the bottom
equation in Eq. 22 and setting it equal to Rt:



v−

v+ =
Rt − Zo
R t + Zo

= Γ (25)

This ratio is known as the reflection coefficient. After the forward wave hits the
termination a reverse wave is set up to match the boundary condition and this
wave heads back to the initial source of the waves. There are three limiting
conditions.  The first situation is when the termination is open or Rt=�, the
reflection coefficient is +1. A reverse wave of the same magnitude and polarity is
sent back to the source. Next, if the termination is shorted or Rt=0, the reflection
coefficient is -1. A reverse wave of the same magnitude but opposite polarity is
launched back towards the source.  Finally, if the termination Rt=Zo, the reflection
coefficient is zero and no reverse wave is created. An observer looking into the
load could not distinguish between a transmission line of infinite length and a line
terminated with a resistor equal to its characteristic impedance.

In this paper we will be working mostly in the frequency domain so we will
consider only sinusoidal waves. A forward traveling wave can be written as:

v+ t,z( )= Vo
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Because of this simple time dependence, the operations of integration and
differentiation become the simple operations of division and multiplication of jω:

dt∫  →  
1
jω

∂
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 →  jω (27)

The quantity A is a complex number and can be thought of as a phasor where:

A = Vo
+        arg A( ) = −ω

z
vel

(28)

The negative sign for the phase is the result of choosing the positive sign for the
time dependence jωt. The derivative of the phase with respect to frequency gives
the time delay through the transmission line of length z:

−
∂

∂ω
arg A( ) =

z
vel

= τdelay (29)

Equation 28 holds for a simple transmission line. In general, the phasor "A"
can be a complicated function of frequency. A vector network analyzer can be
used to measure the variation of these wave phasors versus frequency. Most
network analyzers can measure a circuit with one or two ports as shown in Fig 10.
At each port, there is an ingoing wave "A" and an outgoing wave "B". The
network analyzer measures the ratio of the outgoing waves to the ingoing waves:

B1 = S11A1 + S12A2

B2 = S21A1 + S22A 2
(30)

The matrix elements are called "S" parameters and are complex numbers. The
diagonal matrix elements S11 and S22 are similar to the reflection coefficient
described above. The off diagonal matrix elements S12 and S21 can be thought of
transmission coefficients. (6)



THE STRIPLINE PICKUP

The stripline pickup shown in Fig. 11a is one of the most common types of
beam pickup.(3) The metal electrode forms a transmission line along the direction
in which the beam travels. The stripline is terminated at both ends with resistors
equal to the characteristic impedance of the stripline.  Note that both resistors do
not have to reside inside the beam pipe. They can be brought outside by
transmission lines with the same characteristic impedance and terminated outside
the vacuum chamber.

As discussed in section on the frequency domain response, the pickup behavior
can be characterized by its impulse response. As the impulse image charge follows
the beam down the beam pipe, it will encounter the upstream edge of the stripline
as shown in Fig. 11b. This edge looks similar to the gap discussed in section on the
time domain response. However because the width of the stripline is only a
fraction of the beam pipe circumference, the stripline will not intercept all of the
image charge. The fraction that it does accept will be designated as s. This fraction
of image charge that is intercepted by the loop will travel across the upstream gap
as a displacement current. This displacement current will give rise to a voltage
pulse on the upstream end of the stripline. The magnitude of the pulse is equal to
the fraction of image current captured times the characteristic impedance of the
stripline. Because the stripline is terminated at the upstream and downstream ends
with the same characteristic impedance, the voltage pulse will split into two equal
pulses with one of the pulses traveling to the upstream termination and the other
pulse traveling to the downstream termination.
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Figure 9. Electrical circuit
representation of a small section of
transmission.

    

Figure 10. Definition of two port S
parameters.



The fraction of image current traveling downstream will travel along the top of
the stripline until it encounters the downstream gap. At the downstream gap
another pulse is created. This pulse is equal to the upstream pulse but has the
opposite polarity. This change in polarity is due to the fact that the electric field
lines at the downstream gap start on the edge of the stripline and terminate on the
ground plane. Whereas at the upstream gap, the electric field lines started at the
ground plane and terminated on the upstream edge of the stripline.

The pulse at the downstream gap also splits into two pulses. However, if the
velocity of the beam and the phase velocity of the stripline are equal ( as in the
case for high energy beams), the pulse that was created at the upstream gap and
headed towards the downstream termination will arrive at the downstream gap at
the same time the image current is inducing the downstream voltage pulse. Since
the pulses heading towards the downstream termination have opposite polarity,
these pulses will cancel each other and there will be no energy dissipated in the
downstream termination! The pickup behaves very much like a microwave contra-
directional coupler in that the direction of the energy flow in the pickup is in the
opposite direction in which the beam is traveling. In practice some small fraction of
energy will be dissipated because of small mismatches in velocity and
discontinuities along the stripline.

Vout Zo Zo

t=0

t=L/c

  Figure 11a.  A stripline pickup.          

Figure 11b. Snapshot of induced
voltage pulses on a stripline pickup.

The impulse response in the time domain which is sensed at the upstream
termination consists of the first half pulse created at the upstream gap followed by
a half pulse in the opposite polarity and delayed by twice the transit time of the
stripline:
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The Fourier transform of the impulse response is:
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which is plotted in Fig. 12. The delay of the response is equal to the length of the
stripline. The phase intercept (phase when ω->0) is 90°. The magnitude of the
response has a maximum at frequencies where the length is an odd multiple of
quarter wavelengths:

f center = 1
4

c
len

2n −1( ) (33)

where n=1,2,3.... . The stripline pickup is usually designed to operate in the first
lobe (n=1). The 3dB points of this lobe is:

f lower =
1
2

fcenter f upper = 3 ⋅ f lower (34)

which is greater than an octave of bandwidth! A simple frequency domain circuit
model for this type of pickup is shown in Fig. 13.

Finally, at low frequency the response approaches:

Z ω( )
ω

len
c

<<1
 →      s ⋅ jωL ⋅ len (35)

where L is the inductance per unit length of the stripline. Equation 35 tells us that
the pickup actually looks like an inductor to the image current at low frequencies.
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Figure 12. Frequency domain
response of a stripline pickup.

      

Figure 13. Equivalent electrical
circuit of a stripline pickup.

HIGH FREQUENCY EFFECTS

As shown earlier, the pickup sensitivity increases as the width increases to
intercept more image current. Also, the pickup sensitivity is proportional to the
pickup impedance. However, the impedance of stripline decreases as the width
increases. To combat this drop in impedance, the height of the stripline above the



ground plane needs to be raised. The net result of increasing the pickup sensitivity
and impedance is to make striplines that are wide and tall. In the analysis of the
previous section, it was assumed that the image current distribution that was
intercepted at the gaps formed a voltage pulse simultaneously and was represented
as a delta function. That is, the current intercepted on the outside edges of the gap
reached the termination at the same time as current that was intercepted in the
middle of the gap. If the pickup width is an appreciable fraction of a wavelength at
the frequency of interest, these assumptions are no longer valid.(7) An extremely
simple model of a impulse response for a pickup that is very wide is shown in Fig.
14a. This model assumes that the image current at the outside edges of the gap
take a longer time to reach the termination as compared to image current
intercepted at the centers of the gap. The frequency response is given as:
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where σ is equal to the delay time between the center and the outside edges of the
gaps. This response function is plotted in Fig. 14b. The response is equal to the
frequency response of the square pulse described in Eq. 18 times the impulse
response of Eq. 32. One should note that Eq. 38 collapses down to the original
impulse response described in Eq. 36 when σ approaches zero. As shown in Fig.
14b, the spreading of the image charge on the gap has the effect of lowering the
bandwidth of the response. So, as common to many different types of electrical
engineering, there is a upper limit on the gain-bandwidth product of the
performance of the pickup.
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Figure 14. Simple time and frequency domain impulse responses of a
pickup with transit time delay along gaps included.

For extremely high frequency pickups such as stochastic cooling arrays, the
band limiting effect of the transit time delay due to electrode width is a serious



limitation. Also, the appropriate transit time delay is difficult to calculate due to the
three dimensional behavior of the stripline pickup. One should also note that we
have completely avoided the discussion of parasitic inductances and capacitances
due to end effects of the stripline electrode. However, some of these problems may
be made more tractable by changing the three dimensional geometry of the stripline
pickup to a planar, two dimensional, pickup as shown in Fig. 15 (8).

The gaps for this electrode can be modeled approximately by slotline
transmission lines. Slotline transmission lines do not support TEM waves so that a
unique characteristic impedance cannot be defined. However, a power impedance
of the form:

  
Zo ≡

r 
E ⋅ d

r 
l 

gap
∫

2

2P
(37)

where E is the electric field across the gap and P is the power transmitted along the
slotline. A circuit model for this structure is shown in Fig. 16 where the weighted
image current is separated by transmission lines. Note that if the transmission lines
on the transverse gaps were omitted, this circuit model would reduce to the simple
stripline model shown in Fig. 13. The overall effect of this model is to describe the
electrode with an effective length.

Length effective = Length + Width (38)
Pickups with bandwidths up to 4 GHz have been fabricated with this geometry. At
these high frequencies, the physical length shrinks almost to zero and most of the
delay is made up in the width of the electrodes. As the length shrinks to zero, the
electrode becomes the magnetic dual of a folded dipole antenna.

KICKERS AND RECIPROCITY

Up to this point there has been no discussion on the behavior of kickers.
However, using the Lorentz reciprocity theorem, the behavior of kickers can be
understood from the pickup behavior. The Lorentz reciprocity theorem is a useful
and well known theorem for describing antenna systems. Lorentz reciprocity is
derived by manipulating two solutions of Maxwell's equations. One solution
describes the transmitter (kicker) and the other solution describes the receiver
(pickup) (9).

Consider the receiver or pickup configuration in Fig. 17a. The beam which is
represented as a current source density Jp induces an electric field at the pickup
Ep. The current source also induces fields Ep,Hp throughout the beam pipe
volume which is surrounded by a surface S. Figure 17b describes the transmitter or
kicker configuration. The kicker is powered by a current source density Jk and
produces a field Ek that acts on the beam. Also there are fields throughout the



volume designated by Ek, Hk. By manipulating Maxwell's equations describing the
two configurations, the identity:
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is derived. The contribution to the surface integral on the left hand side of Eq. 39
at the beam pipe walls is zero because the electric fields for both cases vanish.
Also, the surfaces in which the beam enters and exits are far enough away from the
electrode so that the fields are normal to the beam direction and this contribution
to the surface integral vanishes. Equation 39 can be rewritten as:
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which can be re-written in integral form as:
IkVp = IpV k (41)

The pickup impulse response is the ratio of the voltage induced on the pickup to
the beam current. The kicker impulse response is the ratio the longitudinal energy
given to the beam to the current in the kicker. Equation 41 can be re-arranged

Z p = Zk (42)

Which states that to know the impulse response of the kicker all one has to do is
measure (or derive) the impulse response of the pickup! However, it should be
noted that due to the "dot" products in Eq. 40,  this theorem holds only for kickers
that give an accelerating kick in the direction of beam travel (i.e.. longitudinal
kickers). Also as in the case of the stripline pickup above, a stripline kicker will be
contra-directional. That is the voltage wave in the kicker starts at the downstream
end of the electrode and travels to the upstream end.
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Figure 15.  Simple geometric model of a planar loop.



For transverse kickers another theorem using Maxwell's equations can be
derived. However, we will use some simple arguments to derive the transverse
kicker response for a stripline kicker.

A longitudinal stripline kicker is shown in Figure 18a. Both the top and bottom
electrodes are wired in the sum mode. The pickup response and therefore the
kicker response is zero at DC as discussed in Eq. 32. This can be simply seen by
noting that at low frequencies there is no phase delay through the stripline so that
the electric field along the beam direction at the upstream gap cancels the electric
field at the downstream gap. There is no net acceleration. However, for a
transverse kicker the electrodes are wired in the difference mode as shown in Fig.
18b so there is a net transverse electric field at DC. To account for this DC
transverse field, Eq. 32 must be modified:

Z⊥ ω( ) = s ⋅ Zo ⋅ e
− j
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c
 
 

 
 

ω ⋅ len
c

 
 

 
 

(43)

This is formally derived by the Panofsky - Wenzel theorem which relates the
transverse impedance to the longitudinal impedance with a factor of 1/jω (10).
The response of a longitudinal and transverse kicker is shown in Fig. 19. Note that
although the kicker has a DC response, the upper -3dB frequency is 40% lower
than the upper -3dB frequency for the longitudinal kicker because of the 1/jω
factor of the transverse field.
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Figure 16.  Equivalent electrical circuit for a planar loop.
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Figure 19. Response of a
longitudinal and transverse kicker.

WIRE MEASUREMENTS

After an pickup or kicker electrode has been designed, it is often desirable to
test the performance of the electrode before it is installed in the accelerator. The
transverse electromagnetic (TEM) fields of the beam can be simulated by
stretching a wire over the electrode in the direction of beam travel. The wire forms
a TEM transmission line with the ground plane of the electrode with a



characteristic impedance of Zo which is a function of the wire diameter and its
distance away from the ground plane. Downstream of the pickup, the wire is
terminated with the ground plane with a resistor equal to Zo. The electrical
schematic of  a wire measurement is shown in Fig. 20.

Zp

Γ
Vout

Ip

Zo
I+ =

V+

Zo

Figure 20.  Electrical schematic of a wire measurement.

The impedance seen by the forward traveling wave at the pickup is the pickup
impedance plus the characteristic impedance of the transmission line. Because this
net impedance is not equal to the characteristic impedance of the wire transmission
line, a portion of the incident wave will be reflected at the pickup backwards
towards the source. In the case of the TEM wave due to an actual  charged
particle beam, this reflected wave could not exist because a charged particle beam
cannot support a TEM wave traveling in the reverse direction! The only waves
that travel in the reverse direction for a particle beam are the higher order
waveguide modes of the beam pipe. The frequencies of usual interest are usually
below the cutoff of these higher order modes.

The effect of this reflected wave for the wire measurement can be determined
by calculating the network analyzer transfer function S21.

S21 = Vout

V +
(44)

The current flowing into the electrode for the wire model is:

Ip = I
+ ⋅ 1− Γ( )

(45)
where:

Γ =
Zp + Zo( )− Zo

Zp + Zo( )+ Zo (46)
The transfer response is:
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(47)
which can be inverted to find the electrode impedance:

Z p = S21

1 − 1
2

S21

Zo (48)

For simplicity, we have assumed that the pickup electrode presents a lumped
impedance Zp to the wire transmission line. In reality, this is a gross
oversimplification because the pickup is often operated at frequencies in which the
electrode is a quarter wavelength long. Therefore, the terms in the denominators of
Eqs. 47 and 48 are not accurate.

However, the denominator terms of Eqs. 47 and 48 can be neglected if the
characteristic impedance of the wire is made much larger than the impedance of
the electrode. This is difficult to due in practice. The characteristic impedance of
the wire transmission line only increases logarithmically as the diameter of the wire
is decreased so characteristic impedances greater than 400Ω are difficult to obtain.
Also the measuring ports of network analyzers have a characteristic impedance of
50Ω. In order to avoid reflections caused by an abrupt change in characteristic
impedance between the network analyzer cable and the wire transmission line, a
matching network must be built between the network analyzer and the wire
transmission line. The bandwidth of the matching networks are usually inversely
proportional to the difference in characteristic impedance between the network
analyzer and the wire transmission line so that broadband measurements are
difficult to make.

Another method to avoid the denominator terms in Eqs. 47 and 48 is to reduce
the electromagnetic coupling (S21) between the wire and the electrode. This is
fairly easily done for the measurement of beam position electrodes. To measure the
beam position, two electrodes are placed on opposite sides of the beam pipe and
the difference between the two signals is taken as shown in Fig. 21a. Because of
the odd symmetry of the measurement, the measurement will not be sensitive to
any longitudinal component of the electric field at the center plane between the
two electrodes. Therefore one of the electrodes can be replaced with a ground
plane inserted between the two electrodes as shown in Fig. 21b. The ground plane
in Fig. 22 preserves the odd symmetry of the measurement shown in Fig. 21a. The
beam in Fig. 22 can be modeled with a wire  over the ground plane as shown in
Fig. 21c. The wire size and spacing is chosen to make a 50Ω transmission line. The
50Ω transmission line configuration of Fig. 21c avoids the mismatches between the
network analyzer and the wire. If the wire is placed sufficiently close to the ground
plane, the coupling will be reduced so that:

S21 <<1 (49)
The parameter of interest for a beam position pickup is the ratio of the impedance
to the transverse displacement of the wire which is shown in Fig. 21c as x.



Z p(Ω / mm) =
S21
x

Zo (50)

One important mistake that is often made with wire measurements is to forget
to connect the ground of the network analyzer coaxial cable to the ground plane of
the electrode. This will cause a serious disturbance to the image currents flowing
on the electrode ground plane which will distort the measurement. This connection
is emphasized by heavy lines in Fig. 21c.

TIME DOMAIN GATING

Even when there is a good ground connection between the network analyzer
and the wire transmission line, there will be reflections due to the mismatch in
geometry between the analyzer cables and the wire transmission line. These
reflections will introduce some errors in the measurements. The response shown in
Fig. 22a is typical of a measurement were there are some unwanted reflections.
The reflections show up as "noise" or ringing added on top of the desired signal.
The spacing in frequency between the notches of the ringing is inversely
proportional to the distance between the electrode and the source of mismatch.

Most network analyzers have a time domain option built in. The impulse
response in the time domain is obtained by performing the inverse Fourier
transform on the frequency response of S21. This response is shown in Fig. 22b.
Besides the normal doublet response as described in Eq. 31, there is a small
reflection of the response that  comes at a much later in time. In the time domain
option of certain network analyzers, a "gate" can be put around the desired signal
as shown in Fig. 22b. Then, when the Fourier transform is applied to the gated
signal the ringing is removed from the frequency response as shown in Fig. 22c.
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Figure 21.  Low coupling difference mode wire measurement.

SUMMARY



A simple understanding of beam pickup and kickers can be obtained as
considering a relativistic beam as a current source. The current source that
impinges on the electrodes can be thought of as an image current flowing along the
beam pipe walls or a TEM wave that flows through the beam pipe. The response
of a pickup to any input signal can be calculated by using the impulse response of
pickup. The difficult operation of convolution in the time domain turns out to be
multiplication in the frequency domain. The high frequency behavior of pickups
can often be explained in terms of transmission line concepts. The simple one
dimensional model of a stripline electrode breaks down when the width of the
stripline is on the order of a wavelength for the frequency of interest. Extremely
high frequency electrodes can be made using two dimensional planar electrodes
which account for transit time delays along the edges of the pickup. Using Lorentz
reciprocity, the behavior of longitudinal kickers can be understood studying the
pickup response. However, for transverse kickers, a division of jω must be applied
to the pickup response in order to get to true kicker response.



Frequency

S21 
Mag

Frequency

Phase

45°

90°

135°

S21

Time

Reflection

Frequency

S21 
Mag

Frequency

Phase

45°

90°

135°

S21

(a)

(b)

(c)

gate

Main 
Doublet

Figure 22 . Time domain gating.

REFERENCES

1. J. D. Jackson, Classical Electrodynamics  (John Wiley and Sons, Inc. 1962),
Ch. 11, pp. 555.

2. R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill,
1961), Ch. 1, pp. 34.

3. R. E. Schafer, "Beam Position Monitoring," in AIP Conference Proceedings
on Accelerator Instrumentation (AIP, Upton, NY. 1989) pp. 26-55.

4. W. H. Hayt, Jr. and J. E. Kemmerly, Engineering Circuit Analysis (McGraw-
Hill, 1978), Ch. 19, pp. 664-668.



5. R. G. Brown, R. A. Sharpe, W. L. Hughes, and R. E. Post, Lines Waves and
Antennas (John Wiley and Sons, Inc. 1973), Ch. 2, pp. 14-32.

6. R. G. Brown, R. A. Sharpe, W. L. Hughes, and R. E. Post, Lines Waves and
Antennas (John Wiley and Sons, Inc. 1973), Ch. 5, pp. 112-122.

7. D. P. McGinnis, J. Petter, J. Marriner, S. Y. Hsueh, "Frequency Response of
4-8 GHz Stochastic Cooling Electrdodes," Proceedings of the 1989 IEEE
Particle Accelerator Conference, Vol. 1, 639, March 1989.

8. D. P. McGinnis, "Theory and Design of Microwave Planar Electrodes for
Stocahstic Cooling of Particle Beams," Microwave and Optical Technology
Letters, Vol. 4, Number 11, Oct. 1991, pp 439-443

9. R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill,
1961), Ch. 3, pp. 116-120.

10. D. A. Edwards, M. J. Syphers, An Introduction to the Physics of High Energy
Accelerators, (John Wiley and Sons, Inc. 1993), Ch. 6, pp 199.


